
Presentation by Ms. Rong Fu at IDEON in Lund University







# Does Marriage Make Us Healthier? -Evidence from Japanese Elderly-

Rong FU, Haruko NOGUCHI, Koichi SUGA

## **Background and Motivation**

Motivation

Elderly health relates to social insurance, fiscal balance, labor markets...

Previous works show,

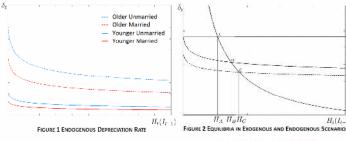
Marriage protection effect vs Marriage selection effect on health

But, they are

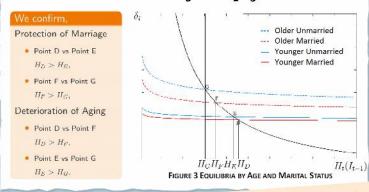
Medical science, descriptive results without theoretical models Case study, insufficient data

Working for Western societies, diametrical culture in Asia

Therefore present study aims to investigate,


marriage protection effect by theoretical model and generalized data

# Theoretical Approach


• Following Grossman's Model  $H_{t+1} = I_t + (1 - \delta_t)H_t$ , but assume  $\delta_t = \delta(I_{t-1}, t; m_t)$ . Solve the UMP to derive the F.O.C,

$$\underbrace{\Phi_t' w_t / \pi_{t-1}^{I}}_{\text{Health Demand}} = \underbrace{\delta_t + (\partial \delta_t / \partial I_{t-1}) H_t}_{\text{Health Supply}} \tag{1}$$

By which optimal health capital (OHC),



Confirm the influence of Marriage and Aging on the OHC,

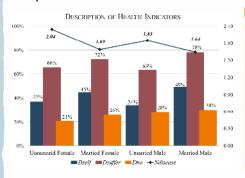


# **Empirical Strategy**

Instrumental Variable Methods 2SLS compared with OLS

- Three theoretical hypotheses to be empirically investigated,
- 1. Married individuals enjoy higher OHC vs unmarried ones
- 2. An endogenous  $\delta_{\rm L}$  deceasing to  $I_{\rm L-1}$  contributes a higher OHC
- 3. OHC decreases to time 1, and eventually approaches minimal required  $H_{min}$
- By linearization of equation (1) and specification of δ<sub>t</sub>,

$$\delta_{t} = \beta_{6}^{x_{t}} \left( \frac{t^{\beta_{7}}}{(m_{t} + 1)^{\beta_{8}} I_{t-1}^{\beta_{9}}} \right)^{\frac{1}{n}}$$
 (2)


Derive the regression function as,

$$\begin{split} \ln H_t &= \alpha_0 + \alpha_1 \ln w_t - \alpha_1 \ln p_t + \alpha_2 E_t + \alpha_3 \ln I_{t-1} - \alpha_4 \ln t \\ &+ \alpha_5 \ln (m_t + 1) - x_t \alpha_6 + u_t \end{split} \tag{3}$$

- 1.  $\alpha_3 > 0$  positive investment effect
- $2.-\alpha_4 < 0$  deterioration on health due to aging
- 3.  $\alpha_5 > 0$  positive marriage protection

#### **Data and Measurements**

Dependent Variable – Health Indicator



- ealth Indicators

    $D_{self} = 1$ if self-rated health is

  "excellent" or "very good"
- ullet  $D_{suffer} = 1$  if "not suffer any" or "not suffer much" difficulties in daily life due to poor health
- $D_{no} = 1$ if respondents suffering no
- N<sub>disease</sub> number of endured diseases, from 0 to 27
- Treatment and Instruments

#### Survey "Health and Retirement"

- by the National Institute of Population and Social Security Research (NIPSSR)
- annually implemented from 2007 to 2012, in total six waves
   targets aged from 45 to 80 randomly selected from 39,311 monitors in 2007

## Results and Implications

Marriage DOES Protect Health? — YES!

|                                                                                |                   | A       | LL                       |                  | MALE                |         |                        |                  | TEMALE   |         |                          |                |
|--------------------------------------------------------------------------------|-------------------|---------|--------------------------|------------------|---------------------|---------|------------------------|------------------|----------|---------|--------------------------|----------------|
|                                                                                | OLS               |         | 281.8                    |                  | OLS                 |         | 281.8                  |                  | OLS      |         | 281.8                    |                |
|                                                                                | coef.             | t-stat  | coef.                    | t-stat           | coef.               | t-stat  | coef.                  | t-stat           | coef.    | t-stat  | coef.                    | t-sta          |
|                                                                                |                   |         |                          |                  |                     | $D_s$   | elf                    |                  |          |         |                          |                |
| $D_m = 1$                                                                      | 0.003**           | (2.48)  | 0.303°00                 | (2.00)           | 0.08124             | (2.02)  | 0.110                  | ( 0.82)          | 0.051    | (1.62)  | 1.05200                  | (3.62)         |
| Endog Test <sup>2</sup><br>Over-Test <sup>3</sup><br>F statistics              | ·<br>·<br>· 22.05 |         | 7.01***<br>0.89<br>25.24 |                  | ±<br>15.39          |         | 1.87<br>0.34<br>18.50  |                  | 9.57     |         | 21.36***<br>1.76<br>7.58 |                |
|                                                                                | $D_{saffi.r}$     |         |                          |                  |                     |         |                        |                  |          |         |                          |                |
| $D_m = 1$                                                                      | 0.089***          | (3.90)  | 0.408***                 | (3.04)           | 0.116***            | (3.34)  | $0.279^{\circ}$        | $\{1.83\}$       | 0.062**  | (2.04)  | District                 | (2.19)         |
| Endog-Test <sup>2</sup><br>Over-Test <sup>3</sup><br>F <sub>-</sub> statistics | 18.06             |         | 6.35 **<br>0.02<br>15.93 | 100              | 11.96               |         | 1 23<br>3,02°<br>11.50 | - 531            | 9.71     |         | 3.80°<br>1.84<br>5.45    | - 2            |
|                                                                                | $D_{no}$          |         |                          |                  |                     |         |                        |                  |          |         |                          |                |
| $D_m = 1$                                                                      | 0.039             | (1.82)  | 0.213*                   | (1.85)           | 0.010               | (1.15)  | 0.110                  | (0.76)           | 0.052*   | (1.92)  | 0.1200                   | (3.11)         |
| Endog Test <sup>3</sup><br>Over-Test <sup>3</sup><br>F statistics              | 52.29             |         | 2,50<br>1,59<br>58,48    |                  | 32.20               |         | 0.25<br>1.08<br>39.22  |                  | 24.86    |         | 4.08***<br>0.46<br>21.17 |                |
|                                                                                | Ndiaman           |         |                          |                  |                     |         |                        | 21330            |          | 23.11   |                          |                |
| $D_m = 1$                                                                      | -0.253***         | (-3.01) | -1.501***                | (-2.90)          | =0.263 <sup>8</sup> | (-1.96) | -1.005*                | (-1.67)          | -0.277** | (-2.55) | #0.281 <sup>cs</sup>     | (-2.51         |
| Endog-Test <sup>2</sup><br>Over-Test <sup>3</sup>                              |                   |         | 6.87***<br>1.63          |                  | 4                   |         | 1.74<br>2.04           |                  | 10       |         | 6.31**<br>0.11           |                |
| F_statistics                                                                   | 58.67             |         | 50.87                    |                  | 35,35               |         | 20.77                  | essayor.         | 28.44    |         | 23.37                    |                |
|                                                                                |                   |         |                          |                  | First               | Stage   | Equal                  | ion              |          |         |                          |                |
| Marriage Eq.<br>Des<br>honsesses                                               | 9                 |         | 0.011                    | (0.64)<br>(7.62) |                     |         | 9,006<br>0,200***      | (0.25)<br>(6.18) | Æ.       |         | 0.028<br>0.189***        | (0.71<br>(4.55 |

### In summary, regardless of gender:

- ullet  $D_{self}$ : Strongly marginal increased probability of optimistic self rating
- D<sub>suffer</sub>: Strongly marginal increased probability of not suffering difficulties
- ullet  $D_{no}$ : Marginal increased probability of suffering no disease (except for male)
- N<sub>disease</sub>: Strongly marginal decreased number of endured disease

#### • What Can Government Do?

As mutual support of elderly couples protect both mental and physical health

1. Take Marriage into account when implement public health policies for elderly;

#### In prospect.

- 1. Labor market: Promotion of participation
- 2. Long-term care insurance: Cost saving